
 

VTG: Learning historical information with variable time granularity 

Hao Xiong 

Guangdong University of Technology, Guangzhou, China 

2122105102@mail2.gdut.edu.cn 

Keywords: Temporal knowledge graphs,  Variable time granularity,  Hierarchical weighted 

aggregation,  Link prediction,  Embedding model 

Abstract: Temporal knowledge graph inference is pivotal for under- standing knowledge graph 

evolution. However, current approaches often underutilize temporal information. Moreover, there 

exists room for improvement in the critical task of link prediction within knowledge graph 

inference. This study introduces an innovative inference architecture that employs multi-domain 

attention and dynamic time strategies, enabling adaptive selection of historical data and temporal 

spans to enhance the timeliness and accuracy of temporal knowledge graph inference. Empiri- cal 

results demonstrate substantial performance enhancements in knowl- edge graph state prediction. 

Furthermore, the model excels in the task of link prediction across multiple temporal knowledge 

graph datasets. Our approach showcases substantial potential across diverse domains, including 

social networks, scientific literature, and intelligent recommendation systems, contributing to the 

advancement of knowledge graph research. 

1. Introduction 

The concept of knowledge graphs (KGs) was initially developed by Google as a knowledge base 

to support its semantic search. As the application of knowledge graph technology has deepened, 

KGs have become the most important form of knowledge representation in the era of big data. As a 

form of knowledge representation, a knowledge graph is a large-scale semantic network in which 

each fact is represented by a triplet (s, r, o) consisting of a head entity, relation and tail entity. 

However, many facts are based on time conditions, hence the concept of temporal knowledge graph 

(TKGs) has been introduced. Specifically, a timestamp T is added to the original triple (s, r, o) to 

form a quadruple (t, s, r, o). For example, when expressing the temperature of a day, it can be 

expressed as (June 15th, 2022, New York, average_temperature, 75 degrees Fahrenheit) and (June 

16th, 2022, New York, average_temperature, 71 degrees Fahrenheit). TKGs usually have the 

problem of incompleteness, and link prediction tasks become one of their effective solutions. The 

link prediction task in TKGs aims to predict missing temporal facts based on existing facts in the 

graph. This task often relies on representation learning, which maps entities and relationships to 

lowdimensional vector spaces to enrich their semantic representation. The core issue of 

representation learning in TKGs is to represent the constantly updated graph structure information 

as low-dimensional vectors. 

Most existing methods, such as RE-Net [12], DySAT [9] and ALRE-IR [3], tend to retain very 

limited graph structure information, selecting historical snapshots before the query time point for 

learning. These methods generally believe that historical facts closer to the query time point contain 

more information, while the information in the distant historical subgraph can be ignored. However, 

this way of selecting historical snapshots lose a large amount of historical information and cannot 

learn more complete node representations. 

To address this issue, we propose VTG, an embedding model for TKGC, which abandons the 

fixed time window approach used in previous works to capture historical snapshots and instead 

adopts a variable time granularity historical snapshot selection mechanism. This mechanism can 

enhance the model's ability to learn more comprehensive node representations and improve link 
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prediction performance by selecting historical snapshots with variable time granularity based on 

different time points. 

In addition, we introduce a hierarchical weighted aggregation method for neighborhood 

aggregation, which more intuitively and effectively aggregates neighborhood information. 

Specifically, by assigning a neutral strength score valr to each relationship, which indicates the 

level of adversarial or cooperative behavior in the relationship. Subsequently, it calculates the 

average of all relationship scores between any two pairs of nodes to determine the overall 

adversarial or cooperative level, denoted as val(s,o). The hierarchical weighted aggregator uses a 

mechanism, similar to hierarchical attention, to learn node representations. It divides into 

relationship layer attention and entity layer attention. 

The relationship layer attention differentiates the importance of facts by the semantic similarity 

(difference in neutral scores) between the query relationship and neighborhood relationships. The 

entity layer attention differentiates the importance of facts by the difference between the neutral 

scores of neighborhood relationships and the neutral scores between entities. Finally, a temporal 

sequence encoder is used to capture the time dependencies of historical subgraphs at different time 

points. 

The main contributions of this paper are as follows: 

(1) We propose an embedding model for TKGC, VTG, which adopts a variable time granularity 

mechanism to help the model learn more comprehensive node representations. 

(2) We introduce a hierarchical weighted aggregation method for neighborhood aggregation, 

which enhances the interpretability of the inference by separately aggregating neighborhood 

information at the relationship and entity layers while incorporating query information into the 

aggregation process. 

(3) We conducted extensive experiments on three public temporal knowledge graph datasets, 

demonstrating the effectiveness of VTG in the link prediction task. 

2. Related Work 

Temporal knowledge graphs is a type of knowledge graph that incorporates temporal 

information to represent and reason about facts that change over time, allowing for more accurate 

and dynamic representation of real-world knowledge. As a result, TKGs have begun to attract more 

attention from researchers. The main research directions are as follows: 

2.1 Learning temporal information 

Some researchers attempt to extend static knowledge graph embedding techniques to the domain 

of temporal knowledge graphs. TTransE [18] is an extension of the TransE [23] model, which 

represents relations as time-dependent transition matrices, using matrix multiplication to capture 

temporal dependencies between entities. In HyTE [16], timestamps are regarded as hyperplanes 

capable of projecting entity and relation vector representations. TComplEx [8], as an extension of 

ComplEx, defines temporal knowledge graphs as fourth-order tensors and introduces regularization 

techniques to prevent overfitting. 

2.2 Dynamic embeddings 

Dynamic embedding methods aim to model the dynamic evolution process of entities or relations 

to learn their dynamic embeddings. Some researchers use timestamps to represent dynamic 

information. The core idea of ATiSE [14] is to decompose time series into trend features, seasonal 

features, and random noise, treating each part as an independent embedding space. Entities or 

relations are modeled as Gaussian distributions on time steps, with KL divergence used to calculate 

fact scores.DE-SimplE [7], inspired by diachronic word embeddings, add a diachronic entity 

embedding function to static models, providing entity feature representations at any time point. The 

TeMP [10] model combines multihop message-passing structural encoders and time encoders to 

model dynamic graph data. The structural encoder learns the structural dependencies of entities at 

each time point and feeds the output to the time encoder. 
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2.3 Learning from graph snapshots 

The evolution process of temporal knowledge graphs can be viewed as a collection of static 

knowledge graph snapshots or subgraphs. Recently, some researchers have attempted to construct 

autoregressive models to handle a series of subgraph slices obtained from splitting temporal 

knowledge graphs. DySAT [9] decouples the evolution process of temporal knowledge graphs into 

structural selfattention layers and temporal self-attention layers. The structural self-attention layer 

learns local neighborhood information of nodes in each snapshot, while the temporal self-attention 

layer flexibly weights historical representations to capture graph evolution processes over multiple 

time steps. RE-Net [12] models the dynamic evolution of facts in an autoregressive manner. It 

utilizes a multi-relation aggregator to encode global graph structural information and local multi-

hop neighborhood information. Furthermore, static attributes of entities are used as constraints to 

further refine entity representations. In contrast to discrete evolution processes, Han et al.[5] employ 

continuous-time embeddings to encode temporal and structural information from historical 

snapshots. They adopt a time-dependent neighbor sampling approach, utilizing multi-relation graph 

convolution networks to capture graph structural information and neural ordinary differential 

equations (ODE)[15] to model the dynamic evolution process. 

3. Method 

In this section, we introduce VTG and begin with an overview of the VTG model's architecture, 

followed by a detailed discussion of its three main components: Variable time granularity sampling, 

Hierarchical weighted aggregator, and Time series encoder. Then, we delve into the implementation 

principles of each module and the connections between them. Lastly, we outline the model's 

inference process. 

 

Fig. 1. Illustration of VTG 

3.1 Overall architecture of VTG 

Fig.1 illustrates the overall architecture of VTG, which consists of three submodules: variable 

time granularity sampling, hierarchical weighted aggregator, and time series encoder. In the 

temporal knowledge graph, all temporal facts are sorted in ascending order according to timestamps 

and divided into a series of subgraph snapshots, i.e., G = {G1, G2, · · · , GT } represents the static 

subgraph of the temporal knowledge graph G at timestamp t, containing all temporal facts at that 

moment. Given a query(s, r, o, tq), the model first uses the variable time granularity sampler to 

sample historical snapshots before the timestamp tq to capture as much historical fact information as 

possible. Simply put, this sampler merges multiple historical snapshots at different timestamps into 

a single snapshot in a reasonable manner. For example, in Fig.1, multiple historical subgraphs{Gtk , 

Gtk+1 , · · · , Gtk+n } are merged into one graph structure GTi . Next, the hierarchical weighted 
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aggregator is used to aggregate neighborhood information for node s to learn a node representation 

based on its neighborhood. After learning the node embeddings in different historical snapshots, the 

temporal sequence encoder is used to capture temporal dependencies between entities. Finally, the 

output of the temporal sequence encoder is passed to the decoder to provide a probability prediction 

distribution for the query. 

3.2 Variable time granularity sampling 

In existing research based on discrete time methods, they usually use limited graph structure 

information, such as RE-Net [12] and DySAT [9]. These methods typically use a fixed-length 

historical window for sampling historical snapshots. This approach has two drawbacks: 

(1) The learned entity representations are not comprehensive enough. They use a fixed-length 

window for sampling, and the model can only capture limited graph structure information. 

Historical information farther from the query timestamp is completely discarded. 

(2) It cannot distinguish the importance of historical snapshots at different timestamps. 

To address these issues, we designed a variable time granularity sampling method to help the 

model learn comprehensive node representations. Intuitively, historical information generally has 

the following characteristics: the closer the historical information is to the prediction timestamp, the 

richer the valid information it contains, while the farther the historical information is, the less 

impact it has on the prediction results. Variable time granularity sampling is performed by defining 

a time span sequence to sample historical snapshots. The definition of the time span sequence is as 

follows: 

Tspan = (an, · · ·, a1,)(m, · · · , m)                                               (1) 

Tspan is a sampling sequence composed of time spans, where each time span represents the fusion 

of multiple historical snapshots into a single graph structure. Note that Tspan consists of two parts: 

the first part uses the powers of a as a time span, with smaller powers closer to the query time point, 

up to the power of 1. The first part is a variable time granularity sampling sequence. The second 

part uses a fixed time span m, with a sequence length of len. The second part is a fixed time 

granularity sampling sequence. 

In this section, the sampling method combines fixed time granularity sampling and variable time 

granularity sampling. Fixed time granularity sampling divides the historical snapshots near the 

query time point into len groups with a time span of m, which is used for learning the more critical 

historical information for the current query. Variable time granularity sampling divides the 

historical snapshots farther from the query time point into time spans with powers of a, where 

smaller powers are closer to the query time point, used for learning historical information with 

relatively less influence on the current query. Due to the use of the powers of a, it is easy to 

incorporate all historical information into the learning process. The farther the historical 

information is from the query time point, the less impact it has on the query, and it will be 

aggregated into a subgraph with a larger time span accordingly. At the same time, we remove 

duplicate facts in the aggregated subgraphs to reduce the model's computational load. 

For example, when a = 2，m = 1，len = 3, the time span sequence for sampling a history 

snapshot of length 3 is (1, 1, 1). When sampling a history snapshot of length 50, the time span 

sequence is (17, 16, 8, 4, 2, 1, 1, 1). The time span sequence calculation formula used in this paper 

is only a relatively reasonable design method. In the future, more design methods are waiting to be 

explored. 

3.3 Hierarchical weighted aggregator 

Temporal knowledge graph datasets such as YOGO, ICEWS, etc., provide an observer-neutral 

intensity score for each relationship, indicating the level of hostility or cooperation between entities. 

The score ranges from [-10, 10]. To facilitate subsequent calculations, we normalize the score to the 

range [0, 1]. The neutral score of the relationship is defined as follows: 

valR = {valr1 , valr2 , · · · , valrN}                                             (2)  
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Where valR represents the set of neutral scores for all relationships, and valri represents the 

neutral score of relationship ri, with a value range of [0,1]. At the same time, we assign a neutral 

score to each entity pair, representing the degree of hostility or cooperation between entities. The 

neutral score of the entity pair is calculated by averaging the neutral scores of all relationships 

between the two entities. The neutral score of the entity pair is defined as follows: 

val(S,O) = {val(si,oj )|si ∈ S, oj ∈ O}                                          (3) 
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r R s o

val s o val
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                                                          (4) 

Where val(S,O) represents the set of neutral scores for all entity pairs, val(si,oj ) represents the 

neutral score between entity si and entity oj, with a value range of [0, 1]. R(si, oj) represents the set 

of relationships between si and oj, and k represents the size of R(si, oj), i.e., the number of 

relationships between entities. 

Given a query (s, rq, o, tq), after capturing historical subgraphs using a variable time granularity 

sampler, the model uses a hierarchical aggregator to aggregate the new historical subgraphs, which 

consist of entity-level attention and relationship-level attention. 

Entity-level attention considers that the weights of different tail entities under the same 

relationship ri on the central node are different, distinguished by the difference between the neutral 

score valri of the relationship ri and the neutral score val(s,o) between entities. The smaller the 

difference, the greater the weight. Specifically, when the values of valri and val(s,o) are closer, it 

indicates that the current level of hostility or cooperation between the entities is more consistent 

with the level of hostility or cooperation represented by the relationship, thus having a stronger 

representation and occupying a higher weight. The definition of entity-level attention is as follows: 
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Here, HT(s, ri) ∈ Rd represents the embedding representation of the head entity s in relation ri in 

graph GT . OT
(s, ri) represents the set of tail entities in graph GT that have a relationship ri with head 

entity s, and n is the size of the set.|valri −val(s,o)| represents the difference between the neutral score 

of relationship ri and the neutral score between entities. O∈  Rd represents the embedding 

representation of tail entity o. 

Relationship-level attention believes that different relationships should have different impacts on 

the central node. Based on this, the model introduces the query relationship to guide the aggregation 

of relationship-level attention. It considers that relationships with a neutral score valrq close to the 

query relationship rq have a greater weight on the representation of the central node. Specifically, 

when the values of valrq and valri are closer, it indicates that the query relationship is more 

semantically similar to the current neighborhood relationship, and therefore, it has more say in 

predicting the current query. The definition of relationship-level attention is as follows: 
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                                     (6) 

Here, HT(s)∈ R2d represents the static representation of the head entity s in graph GT , which 

includes the neighborhood information of the node in the graph. RsT represents the set of 

relationships related to the head entity s in graph GT, where m is the size of the set. (1 −|valrq − 

valri|) is used to calculate the semantic similarity between the query relationship rq and the 

relationship ri. Here, ri ∈ Rd represents the embedding representation of the relationship ri, and || 

denotes the concatenation operation. 

3.4 Time series encoder 

In VTG, we use GRU (Gated Recurrent Unit) as the time series encoder to capture the time 
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dependencies between different historical snapshots. After learning the static representation of 

nodes in different historical subgraphs through the hierarchical weighted aggregator, the sequence 

composed of the static representations of nodes at different time points is fed into the GRU 

sequence encoder to obtain the dynamic representation of nodes, which contains all the historical 

information related to the nodes. The specific implementation of GRU is as follows: 

hT (s) = GRU(HT (s), hT −1(s))                                                  (7) 

Where hT(s) represents the dynamic representation of node s at time T, and HT(s) represents the 

static representation of node s at time T. 

3.5 Reasoning process 

For a given query (s, rq, o, tq), we first obtain the dynamic representation hT(s) related to node s. 

We then concatenate this representation with the original node representation s and the relation 

representation rq. The resulting concatenated vector is passed to a linear layer, and the output is 

normalized using the softmax function to obtain the final probability prediction distribution. The 

definition is as follows: 

P (o|s, rq, tq) = softmax(W[s||rq||hT (s)])                                          (8) 

Where W ∈ R3d×N is a trainable parameter. 

4. Experiments 

In this section, we evaluate the model on three publicly available temporal knowledge graph 

datasets through a link prediction task. Firstly, we provide a detailed introduction to the 

experimental settings, including the datasets, evaluation metrics, parameter settings, and baseline 

methods. Next, we compare and analyze the experimental results and conduct ablation experiments 

to assess the importance of the variable time granularity sampling method. 

4.1 Experimental settings 

To evaluate the model, we selected three datasets commonly used in temporal knowledge graph 

link prediction tasks: YAGO [20], WIKI [21], and ICEWS05-15 [19].Table 1 provides a detailed 

description of the statistical data for these datasets. 

We sort the temporal facts in each dataset by their timestamps and split them into training, 

validation, and test sets at a ratio of 80%/10%/10%. We adopt the widely used filtered version of 

the evaluation metric MRR (Mean Reciprocal Ranking) and Hits@1/3/10 to measure the 

performance of VTG. 

Table 1. Statistics of the benchmark datasets 

Dataset Entities Relations Training Validation Test Timestamps Granularity 

YAGO 10,623 10 161,540 19,523 20,026 189 1 year 

WIKI 12,554 24 539,286 67,538 63,110 232 1 year 

ICEWS05-15 10,488 251 368,868 46,302 46,159 4,017 24 hours 

Regarding the parameter settings for the variable time granularity sampling method in the model, 

the sampling sequences of variable time granularity use powers of 2 as the time span. For the fixed 

time granularity sampling sequences, we set the fixed time span to 1 and the sequence length to 5. 

In other words, a = 2，m = 1，len = 5. 

4.2 Baselines 

We compared VTG with several static knowledge graph embedding models, including 

TransE[23], DistMult[22], DKGE-LFS[4] and RotatE[13], as well as several temporal knowledge 

graph embedding models, including HyTE[16], TTransE[18], TA-DistMult[17], RE-Net[12], 

CyGNet[11], StAR(Self-Adp)[6], TeCre[2] and FIT-CARL[1]. 
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Table 2 Comparison of performance between VTG and other baseline models on three datasets 

Method
 YAGO WIKI ICEWS05-15 

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 

TransE 48.97 62.45 66.05 46.48 49.71 51.71 29.40 - 66.30 

DKGE-LFS 46.00 47.90 53.50 43.12 39.73 47.52 35.33 - 62.95 

DistMult 59.47 60.91 65.26 46.12 49.81 51.38 45.60 - 69.10 

RotatE 65.09 65.67 66.16 50.67 50.71 50.88 30.40 35.50 59.50 

HyTE 23.16 45.74 51.94 43.02 45.12 49.49 31.60 44.50 68.10 

TTransE 32.57 43.39 53.37 31.74 36.25 43.45 27.10 - 61.60 

TeCre 39.80 65.71 38.30 43.50 - 55.60 49.60 52.40 48.30 

TA-DistMult 61.72 65.32 67.19 48.09 49.51 51.70 47.40 - 72.80 

RE-NET 65.16 65.63 68.08 51.97 52.07 53.91 - - - 

CyGNet 63.47 65.71 68.95 45.50 50.79 52.80 57.22 61.77 68.58 

StAR(Self-Adp) 49.60 66.80 - 56.30 53.80 - 52.50 58.30 - 

FITCARL 60.13 55.62 58.41 45.92 48.11 52.71 51.30 61.80 70.00 

VTG 67.13 67.55 69.65 55.60 55.98 58.16 58.81 61.89 70.28 

4.3 Main Results 

Table 2 reports the performance comparison of the VTG model and baseline methods on the link 

prediction task for the three temporal knowledge graph datasets. The best results are highlighted in 

bold, and the second-best results are underlined. 

We observe that the performance of temporal knowledge graph embedding methods is 

significantly better than that of static knowledge graph embedding methods. This is because static 

knowledge graph embedding methods cannot capture the temporal information in the facts and 

cannot model the dynamic evolution of entities and relations. Table 2 shows that our model 

outperforms the baseline methods on almost all metrics. Additionally, some previous works did not 

report the Hits@1 metric on the mentioned datasets, while the VTG model achieves 65.54%, 

54.22% and 52.66% on YAGO, WIKI, and ICEWS05-15 datasets. 

4.4 Ablation Study 

In this section, we study the effect of variations in VTG on the YOGO and ICEWS05-15 dataset. 

We present the results in Table 3. 

Table 3 Ablation study on the YOGO and ICEWS05-15 datasets. 

Method
 YAGO ICEWS05-15 

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 

VTG w/o agg. 64.69 63.07 64.04 65.31 54.69 48.07 55.04 66.31 

VTG w/o var. 62.06 61.47 61.98 63.62 51.32 45.83 54.77 65.02 

VTG 67.13 65.54 67.55 69.65 58.81 52.66 61.89 70.28 

The VTG w/o agg. model does not use hierarchical weighted aggregation, and directly uses the 

historical subgraph information as the input of the encoder; The VTG w/o var. Model directly uses 

a fixed time granularity to extract subgraph information, and then uses hierarchical weighted 

aggregation to extract subgraph information. In Table 3, it can be clearly seen that both the 

hierarchical weighted aggregation method and the variable time granularity method play a key role 

in the model effect. 

5. Conclusion 

In this paper, VTG adopt a variable time granularity sampling method to select historical 

snapshots, incorporating complete historical information into the learning process to obtain more 

comprehensive node representations. We also employ a hierarchical weighted aggregation method 

to capture node neighborhood information and introduce query information into the aggregation 
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process. Experimental results show VTG has good performance in temporal knowledge graph link 

prediction tasks. In future work, we plan to continue exploring how to effectively utilize the 

temporal information in snapshots based on variable time granularity. 
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